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Robust Linear Classifier for Unequal
Cost Ratios of Misclassification

Oludare S, Ariyo' and A.O. Adebanjf

This paper focuses on the robust classificationcpdures when the assumption of equal cost of
misclassification is violated. A normal distributibased data set is generated using the Statisfinalysis
System (SAS) version 9.1. Using Barlett's approttonato chi-square, the data set was found to be
homogenous and was subjected to three linear ¢iassinamely: Maximum Likelihood Discriminant
Function (MLDF), Fisher’s linear Discriminant Furioh and Distance Based Discriminant Function. To
Judge the performances of these procedures, tharAppError Rates for each procedure is obtained fo
different cost ratios 1:1, 1:2, 1:3, 1:4 and 1:5casample sizes 5:5, 10:10, 20:20, 30:30, and 50W5&
results shows that the three procedures are infeadio cost ratio exceeding ratio 1:2 and that MELWas
observed as robust discriminant function amongsifacstion functions considered.

Key Words: Apparent Error Rates, Maximum Likelihood Discmant Function, Distance Based
Discriminant Function, Fisher’s linear

1.0 Introduction

Fisher (1936) was the first to suggest a lineaction of variables representing different charagter
hereafter called the linear discriminant functidis¢riminator) for classifying an individual intme

of two populations. Fisher’s linear discriminanhétion (LDF) method is well established for equal
covariance multivariate normal predictors (Adersb®68).1t optimally deteriorates, however, as the
assumption of normality gets unrealistic (Krzanow4®88). Qian Du and Chein-I Chang (2001)
used distance-based discriminant function (DBDI} tises a criterion for optimality derived from
Fisher's ratio criterion. It not only maximizes tregio of inter-distance between classes to intra-
distance within classes but also imposes a constiiaat all class centers must be aligned along
predetermined directions. A method of discriminatibased on maximum likelihood estimation, is
described. On a variety of mathematical modelsjuding and extending the models most
commonly assumed in discriminant theory, the distrant reduces to multivariate logistic
analysis. Even when no simple model can be assuatleel; considerations show that this method
should work well in practice, and should be verpust with respect to departures from the
theoretical assumptions. The method is compared wtihers in its application to a diagnostic
problem. The consideration of Cost-sensitive Swudmelinear discriminant function has received
growing attention in the past years. (Elkan, 20@&argineantu and Dietterich, 2000). One way to
incorporate such costs is the use of a cost mattiich specifies the misclassification costs in the
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class dependent manner. (Elkan, 2001). Bredehl, (2003) discuses the ideal to let the cost depend
on the single example and not only on the clasth@fexample. Authors also presented a natural
cost-sensitivities extension of the Support Vestachine (SVM) and discused its relation to Bayes
rule. Ariyo and Adebanji (2010) compared the perfance of both Linear and Quadratic classifier
under unequal cost of misclassification and coraduthat both classifiers are insensitive to the cos
ratio exceeding ratio 1:2. Adebaniji et al (2008)eistigated the performance of the homoscedastic
discriminant function (HDF) under the non-optior@ndition of unequal group representation
(prior probabilities) in the population and the mpgotic performance of the classification function
under this condition. The results obtained shoviradl the misclassification of observation from the
smallest group escalate when the sample size I&tis exceeded and this increases in error rate is
not corrected by increasing the sample size. Thsgrwed that the performance of the function is
more susceptible to higher variability in the répdrerror rates. Several Authors had looked into
issue of cost-sensitivity when costs and prior plolities are both unknown (Zandrozny and Elkan,
2001) and its application in different areas esgdcin neural Network (Berardi and Zhang., 1999;
Xingye, and Yufeng, 2008 and Zhergj,al, 2007). The issue of different misclassificatiasts for
balanced data has not been given much attentioncéjléhe study is motivated to evaluate the
performance and robustness of selected lineariftdmsswhen the assumption of equal cost of
Misclassification is violated.

2.0 Methodology

A Simulated data from SAS 9.1 was used for thisl\std'he data consists of two groups with four
variables £; , x,, x3,x,). The Simulation process creates a data set bylaied random variables
from two normal populations

The above procedure was repeated for n = 5, 103@050. For each value of n the, procedure
returned 10, 20, 40, 60 and 100 sample sizes. stdhe equality of mean by multivariate methods,
Hotelling T and Wilks’s lambda was used. The Barlett’s Liketiiratio test was also used to test
the homogeneity or other wise of the data setsthedlata set was found to be homogenous and
was subjected to three (3) selected linear classifnamely: Maximum Likelihood Discriminant
Function(MLDF), Fisher’s linear Discriminant Furani (FLDF) and Distance Based Discriminant
Function (DBDF). To Judge the performances of thpsecedures, the Apparent Error Rates
(APER) for MLDF, FLDF and DBDF under different costtio 1:1, 1:2, 1:3, 1:4 and 1:5 were
obtained.

2.1 Discriminant rules
A discriminant ruled corresponds to a division &F into disjoint regiorRy, ..., R,

(UR=R")
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The ruled defined by allocatetor; if xeR; for j=1,...,n. Discriminant will be more accurate i
m; has most of its probability concentrated in Rdach j.

2.2 Maximum Likelihood rule (ML rule)

The maximum likelihood discriminant rule for allditey an observatiow to one of the population
..., T, IS t0 allocatex to the population which gives the largest likebdoto x. That is the
maximum likelihood rule says one should allocate r; when

L; = maxL;(x) . (Anderson, 1984) (1)

Theorem 11f m; is the N, (u,, %) population, i =1,..., g anf’ >0, then the maximum likelihood

discriminant rule allocatex to m; where je{1,...,n) is that value ofi which minimized the

mahalanobis distancéx — u) 'Y~ (x — u,) where g=2 the rule allocateto ;. If a '(x — u) > 0
anda ' {x —%(fl + 9?2)} >0, wherea=Y."*(u, — u,) andu = (4, + 1) and torr, otherwise.

2.3  Fisher’s Linear Discriminant rule (FDL rule)

Once the linear discriminant function has beenutated, an observatiancan be allocated to one
of the n population on the basis of its “discrinmhacorestt 'x. The samplest; have scores
a'x;=y; . The x is allocated to that population where mseores is closest t'x that is allocate
tor; if la'x-a'kX; 1< 1a'x-a'k; | fori# j (Giri,2004)

Fisher’s discriminant function is most importanttie special case of g=2 groups. Then B has rank

niny

one and can be written aB = (T) dd ' whered = X, — X,. ThusW~1B has only one zero
eigenvalue. This eigenvalue equalgitdV ~'B :(%) d' W~ld. The corresponding eigenvalue is

a = W~1d.Then the discriminant rule becomes; allocate 7z, if d'W™1! {x —%(21 + 3?2)} >0

and to r, otherwise.

2.4 Distance —based discriminant Function

This approach requires a definition of distanceveen the single observation x and each training
sample. One possibility is to define a squaredadist by the Mahalanobis qualities:

D} = (x—u,) lS_l(x = Hy)- (2)
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Wherey; is the mean of ith training set (i=1,2),and Shie tovariance matrix pooled within the
training set.

2.5 Testing Adequacy of discriminant coefficient

Consider the discriminant problems between two imaitmal populations with meapn,, «, and
common matrixy. The coefficient of the MLD discriminat functiom'x are given bya=Y"16

where & =pu, —pu,. In practice of course the parameters are estindlg X;,x, and
S=m((n -1)S, +(n-1)S,), wherem =n, +n; — 2. Letting d = %, — X,,the coefficients of
the sample MLDF given by = m W~1d.

A test of hypothesidiy; @; = 0 using the sample Mahalanobis distanbgs=md' W~'d and
D? = md,W;;'d, has been proposed by Rao (1965) this test statistes the statistic:

(=222 (02 - D) /(m + ¢2D2)) 3)

Where ¢? = % Under the null hypothesis (3) hBs x4+ distribution and we rejedi, for
large value of this statistics.

2.6  Evaluating of Classification Function

One important way of judging the performance of alassificationprocedure is to calculate the
“error rates” or misclassification probabilitiesi¢Rard and Dean, 1988). When the forms of parent
populations are known completely, misclassificatppobabilities can be calculated with relative
ease. Because parent populations are rarely knewenshall concentrate on the error rates
associated with the sample classification functio@sce this classification function is constructed
a measure of its performance in future sample isirgérest. The total probability of
misclassification (TPM) is given as:

TPM = P, le fi dx + P, fRz fo dx 4)

The smallest value of this quantity obtained byudigious choice ofR; and®?, is called the
optimum error rate (OER).
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OER = Minimum TPM .
Probability of Misclassification

The probability of allocating an individual to pdation =; , when in fact he comes from is given
by:
P;j = [ ¢;(x)L;j(x)dx (5)

If the parameters of the underlying distributioe astimated from the data, then we get estimated
probability P;; . Consider the case of two normal populatytu, ,>’) andN, (u,,>). If

U= %(,ul +u,), then whenx comes frommy, a'(x — u)~ N,[,(ga(y1 — u,),a'Ya).Since the
disccriminant function is given by, (x) = a'(x —x) with a = 7" (u, — u,),we see that if x
comes fromr,, h,(x)~N (%AZ,AZ),Where:

A% = (uy = u,) "By — 1y) (6)

Equation (6) is the square Mahalanobis distancevdest the positions, similarly, if x comes
from m;, hy(x)~N GAZ,AZ).Thus, the misclassification probabilities are givy:

Py, = p(h(x) > 0/m,
=p(—E(h)/m;)
:qb(_?lA) (Giri,2004) 7)

whereg is the standard normal distribution function.

2.7 Error Rates

Optimal error rates (OER) are error rate associafti#iul the best possible allocation rule that could
be used, if all assumption made are appropriates €lror rate can be calculated when the
population density functions are known it given by:

OER = minimum TPM = 2¢(>4) +2¢ (4) = ¢ (Z4) (8)
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The performance of sample classification functian be evaluated by calculating the actual error
rate (AER).

AER =Py [ fi(x) dx + f, fi(x)dx (©)
WhereR, andR, represent the classification regions determineddwgple size,, n, respectively.

The AER indicates how the sample classificatiorctiom will perform in future samples. Like the
OER, it cannot, in general, be calculated becausepends on the unknown density functigy()
and f,(x).There is a measure of performance that does nmuendis on the form of the parent
populations and that can be calculated for anysiflaation function procedure. This measure is
called the apparent error rate (APER) is definethadraction of observation in the training sample
that are misclassified by the sample classificafiamction. It can be easily calculated from the
confusion matrix which shows actual versus predigup membership. Fat; observation from
m, andn, observationsrbm r,, the confusion matrix has the form.

Actual Predicted Membership
Membershi
Nyc Ny
Nye Nom

Where
n,.= Number of r; items correctly ag, items.
n,.= Number of r, items correctly as, items.
n.y = Number of r; items misclassified as, items.

n,, = Number of r, items misclassified as, items.

This is called the Apparent Error Rate (APER) adefined as:

APER= MM™2M (Richard and Dean, 1998) (10)

NictNac
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3.0 Results

Tablel shows that Likelihood test ( Barlett's apg@mmation to Chi-square) statistics is not
signification at 5% level of significant, we accepe null hypothesis that the simulatddta has
equal variance covariance matrix.

Table 1 The Test results for testing Equality of Vadan
Data Chi — square Df Ruea(5%) Null Hypothesis
A 6.411 10 0.7796 Equal Vada

Table 2 shows the error for the three classifiecapoocedures under different cost ratio, the APER
for the three discriminant rules becomes unchargethe cost assigh,, is tripled. For cost ratio
1:1 and 1:2 MLDF rule gave the least “error rateinpared to the classification rules considered.

Table 2: Apparent Error rate for the classification rulesler different cost ratio.

Cost ratio ML rule FL rule DB rule
1:1 47.83 48.00 49.67
1:2 50.17 51.67 50.00
1:3 50.00 50.33 50.00
1:4 50.00 50.00 50.00
1.5 50.00 50.00 80.0

In Table 3, the value of Apparent Error rate (APE®)diffract Sample size under different cost
ratios was presented. The result shows that on thdyDistance based Discriminnat Function
(DBDF) is sensitive to Small Sample sizes. At Saargite 5:5, DBDF had that least APER but this
value increases as the sample size increases.dtso clear that sample sizes considered haes littl
effect on the performance of classification funeti@onsidered under different cost ratio.

Table 3 The Apparent Error rate for the Classificatiotesufor different Sample sizes and cost Ratio
Sample ratio

n; 5:5 n; 10:10 n; 20:20 n; 30:30 n; 50:50
ML FL DB | ML FL DB | ML FL DB ML FL DB ML FL DB
Cost ratio
1:1 394 49.0 30.3 419 480 30 38.0 501 30.2 39.0 50.0 [39.8 444B8.0 49.7

3
1:2 40.1 49.0 48.0 43.0 470 49.0 51.80.2 49.1| 499 510 50.0 50.2 517 50.p
1:3 49.7 50.0 503 51.0 53.0 50/0 501 50.0 49.0 50.0 50.0 |5800 50.3 50.0
1:4 50.0 50.0 50. 50.0 500 500 500 50.0 5p.0 500 500 |[58000 500 50.0
15 50.0 50.0 50 50.0 50.0 500 500 50.0 5p.0 500 50.0 |50.@® &S0 50.0
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4.0 Conclusion/Recommendation

Three Linear dicsriminant rules: MLDF, FLDF, and DB were studies when classical cost
assumption is violated. In each allocation ruletroduction of different cost ratios causes
imbalances in the proportion of misclassificatideoathe error rates. At cost ratio 1:1, 1:2 all
classification rules except MLDF gave equal missifsation proportion. The APER for the three
classification rules under different cost ratio &atso examined in this study, for cost ratio Indl a
1:2 MLDF gave the least error rate. At cost raticezding ratio 1:3, the APER remain unchanged
for all classification rules. We conclude that APfIRall classifications considered is insensitive
cost ratio exceeding ratio 1:3.
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